LEAF TIP NECROSIS1 plays a pivotal role in the regulation of multiple phosphate starvation responses in rice.

نویسندگان

  • Bin Hu
  • Chenguang Zhu
  • Feng Li
  • Jiuyou Tang
  • Yiqin Wang
  • Aihong Lin
  • Linchuan Liu
  • Ronghui Che
  • Chengcai Chu
چکیده

Although phosphate (Pi) starvation signaling is well studied in Arabidopsis (Arabidopsis thaliana), it is still largely unknown in rice (Oryza sativa). In this work, a rice leaf tip necrosis1 (ltn1) mutant was identified and characterized. Map-based cloning identified LTN1 as LOC_Os05g48390, the putative ortholog of Arabidopsis PHO2, which plays important roles in Pi starvation signaling. Analysis of transgenic plants harboring a LTN1 promoter::β-glucuronidase construct revealed that LTN1 was preferentially expressed in vascular tissues. The ltn1 mutant exhibited increased Pi uptake and translocation, which led to Pi overaccumulation in shoots. In association with enhanced Pi uptake and transport, some Pi transporters were up-regulated in the ltn1 mutant in the presence of sufficient Pi. Furthermore, the elongation of primary and adventitious roots was enhanced in the ltn1 mutant under Pi starvation, suggesting that LTN1 is involved in Pi-dependent root architecture alteration. Under Pi-sufficient conditions, typical Pi starvation responses such as stimulation of phosphatase and RNase activities, lipid composition alteration, nitrogen assimilation repression, and increased metal uptake were also activated in ltn1. Moreover, analysis of OsmiR399-overexpressing plants showed that LTN1 was down-regulated by OsmiR399. Our results strongly indicate that LTN1 is a crucial Pi starvation signaling component downstream of miR399 involved in the regulation of multiple Pi starvation responses in rice.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Phosphorus remobilization from rice flag leaves during grain filling: an RNA‐seq study

The physiology and molecular regulation of phosphorus (P) remobilization from vegetative tissues to grains during grain filling is poorly understood, despite the pivotal role it plays in the global P cycle. To test the hypothesis that a subset of genes involved in the P starvation response are involved in remobilization of P from flag leaves to developing grains, we conducted an RNA-seq analysi...

متن کامل

Regulation of miR159 and miR396 mediated by Piriformospora indica confer drought tolerance in rice

Drought stress is one of the most determinative factors of agriculture and plays a major role in limiting crop productivity. This limitation is going to rising through climate changes. However, plants have their own defense systems to moderate the adverse effects of climatic conditions. MicroRNA-mediated post-transcriptional gene regulation is one of these defense mechanisms. The root endophyti...

متن کامل

Functional analysis of long intergenic non-coding RNAs in phosphate-starved rice using competing endogenous RNA network

Long intergenic non-coding RNAs (lincRNAs) may play widespread roles in gene regulation and other biological processes, however, a systematic examination of the functions of lincRNAs in the biological responses of rice to phosphate (Pi) starvation has not been performed. Here, we used a computational method to predict the functions of lincRNAs in Pi-starved rice. Overall, 3,170 lincRNA loci wer...

متن کامل

OsPHR2 is involved in phosphate-starvation signaling and excessive phosphate accumulation in shoots of plants.

Previous research has demonstrated that AtPHR1 plays a central role in phosphate (Pi)-starvation signaling in Arabidopsis thaliana. In this work, two OsPHR genes from rice (Oryza sativa) were isolated and designated as OsPHR1 and OsPHR2 based on amino acid sequence homology to AtPHR1. Their functions in Pi signaling in rice were investigated using transgenic plants. Our results showed that both...

متن کامل

MicroRNA399 is involved in multiple nutrient starvation responses in rice

The increasing evidences have revealed that microRNAs (miRNAs) play significant role in nutrient stress response. Previously, miR399 was documented to be induced by phosphorus (P) starvation and involved in regulating P starvation responses. To further investigate the function of miR399 in rice (Oryza sativa L.), we performed GeneChip analysis with OsmiR399 over-expressing plants. Interestingly...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Plant physiology

دوره 156 3  شماره 

صفحات  -

تاریخ انتشار 2011